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9 

Dimensional analysis, similitude 

 and hydraulic models 
 

 

 

 

9.1 Introduction 
 

Exact theoretical solutions to fluid flow problems are generally only available for laminar flow 

conditions and simple boundary conditions, circumstances rarely found in civil engineering.  Recourse 

to experiment may be necessary, especially where the physical boundaries are complex.  One of the 

difficulties which face the analyst is the large number of variables which may influence a particular flow 

phenomenon.   However, by judicious grouping of the variables involved into composite variable 

groups, it is possible to reduce the number of variables used to define a particular flow problem.  This 

can be accomplished by application of the principle that, in a physically correct equation, all terms must 

have the same dimensions.   The primary dimensions which characterise fluid flow systems are mass M, 

length L and time T.  All system parameters, such as force, power, velocity etc.  can be expressed in 

MLT terms: 

 

force = mass x acceleration = MLT
-2

 

power = force x velocity    = ML
2
T

-3
 

dynamic viscosity = force x time/area = ML
-1

T
-1

 

 

 

9.2 Dimensionless quantities 
 

Each fluid flow characteristic is dependent on a number of variables.   For example, the force F in a 

particular flow environment can be expressed in the form 

 

F  =  φ(v, d, ρ, µ)    (9.1)  

 

where φ means  ‘function of’. Any such functions can be represented as a power series sum: 

 

F v d v d
a1 b1 c1 d1 a2 b2 c2 d2 ......= + + +ρ µ ρ µ  

 

where a1, b1, a2, b2, … are numerical indices.  Dividing across by the first term on the right-hand side: 

 

F

v d
1 v d

a1 b1 c1 d1

a2 a1 b2 b1 c2 c1 d2 d1 .......

ρ µ
ρ µ= − +− − − −  

 

Since the first term on the right hand side is dimensionless then all terms in the equation must be non-

dimensional, that is, 

 

F

v d
0

a b c dρ µ













=     (9.2) 

                        

where [  ] indicates "dimensions of". 

 

 

 

9.3 The Buckingham ππππ theorem 
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A phenomenon which is a function of n variables can be modelled as follows: 

 

φ(x1, x2, x3 , ....., xn)  =  0 

 

Such a phenomenon can also be described as a function of  (n-m) non-dimensional group variables, 

where m is the number of basic component dimensions of the variables x1.….,xn. In  fluid  flow these  

basic  dimensions  are  M,  L  and  T,  so that m  =  3.  The corresponding non-dimensional functional 

relationship is 

 

( )F , , , ......... , 01 2 3 n mπ π π π − =  

 

Each π term is a non-dimensional grouping of (m+1) variables, m of which are repeated in all terms.  

For example, the pressure drop in pipe flow can be expressed as a function of six variables: 

 

( )φ ρ µ∆p, L, , v, D, , k 0=      (9.3)  

 

where ∆p is the pressure drop over a pipe length L and k is the pipe wall roughness.  In this case n = 7 

and m = 3.  Taking v, ρ and D as the three repeated variables, the alternative non-dimensional 

functional relationship is: 

 

( )F , , , 01 2 3 4π π π π =  

 

Each π term is a grouping of 4 (that is m+1) variables, 3 (that is m) of which are repeated in all π terms.   

Taking the first term π1: 

 

π ρα β γ
1 v D p= ∆  

and is non-dimensional. Hence 

 

( ) ( )LT ML L ML T 01 3 1 2− − − −





=

α β γ  

 

from which it follows that α = -2, β = -1 and γ = 0, giving π1 the following value: 

 

π
ρ

1 2

p

v
=

∆
 

Similarly 

π π
µ

ρ
π2 3 4

L

D
,

vD
and

k

D
= = =  

 

The resulting non-dimensional functional relationship for pressure drop in pipe flow is 

 

F
p

v
,

L

D
,

vD
,

k

D
0

2

∆

ρ

µ

ρ









 =     (9.4)  

 

The number of variables has been reduced from seven to four. The non-dimensional group variables can 

be combined by multiplication or division: 

 

F
p D

L v
,

vD
,

k

D
0

2

∆

ρ

µ

ρ









 =  

Hence 

∆p

L

v

D

k

D
, R

2

e=








ρ
φ      (9.5)  
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In the Darcy-Weisbach equation for pipe flow the friction factor f is related to pressure drop as follows: 

 

∆p

L

v

D
f

2

=
ρ

 

 

Hence f = ϕ(k/D, Re), as in the Colebrook-White equation. In this case, however, the derivation has 

been based on dimensional reasoning and a judicious selection of the three repeated variables v, D and 

ρ.  

 

 

 

9.4 Physical significance of non-dimensional groups 
 

The force components in fluid systems arise from gravity, viscosity, elasticity, surface tension and 

pressure influences.  The resultant force is called the inertial force (Fi) and the ratio of each of the above 

force components to the resultant force indicates the relative significance of each on overall system 

behaviour. 

 

1.  Gravity    

F

F

MLT

Mg

v

gL
Fi

g

2 2

r
2= = =

−

 

where Fr is the Froude number. 

 

2. Viscosity 

F

F

MLT

L T

L T

L T

Lv
Ri

m

2

2 1

4 2

2 1 e= = = =
−

−

−

−µ

ρ

ρ

ρ

µ
 

where Re is the Reynolds number. 

 

3. Surface tension 

F

F

MLT

L

L T

L

Lv
Wi

2 4 2 2

e
2

σ σ

ρ

σ

ρ

σ
= = = =

− −

 

where We is the Weber number. 

 

 

 

9.5 Similarity requirements in model studies 
 

Dynamic similarity between model and prototype requires that the ratios of the inertial force to its 

individual force components are the same in model and prototype.   This implies that the Reynolds, 

Froude and Weber numbers have the same values in model and prototype. 

 

Geometric similarity is assured by adopting a fixed scale ratio for all dimensions. 

 

If model and prototype are dynamically and kinematically similar then the flow patterns will be the 

same at both scales, resulting in kinematic similarity. 

 

1. Re similarity 

vL vL

m p

ρ

µ

ρ

µ









 =









  

where the subscripts m and  p  relate  to  model  and  prototype, respectively. 

 

2.    Fr similarity 
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v

gL

v

gL
m p











 =











  

 

If gm  = gp   then 

v

v

L

L

m

p

m

p

0.5

=










  

 

Thus if the same fluid is used in model and prototype (that is ρ and µ are the same), it is not possible to 

achieve complete similarity because of the conflicting operational requirements for Re and Fr similarity. 

In practice, a compromise is reached by basing scaling relationships on the predominant force 

component.   For flows without a free surface, for example, pipe flow and flow around submerged 

bodies such as submarine, aircraft, motor vehicles and buildings, Re is taken as the scaling criterion.   

For free surface phenomena, for example, hydraulic structures, ships and so on, Fr scaling is used.  An 

illustrative example of Fr scaling is shown on Fig 9.1.  

 

 

                    insert Fig 9.1 

 

 

 

 

Fig 9.1      Plate showing dam spillway model, Scale 1:50   Hydraulics Laboratory, University College 

Dublin, Courtesy A L Dowley, by permission of K. O'Donnell Chief Engineer, Dublin Corporation. 

 

 

Where ρ, µ and g are assumed to be the same in model and prototype, the scale ratios for the various 

flow parameters, as determined by Re and Fr scaling, can be expressed in terms of the length scale ratio 

λ, where λ = Lm/Lp . Table 9.1 shows scale ratios for flow variables. 

 

The influence of surface tension (Weber number) is generally not significant in hydraulic model studies 

- refer to related comments in Section 9.5.2. 

 

Table 9.1 

Scale ratios for flow variables 

Variable Dimensions Re scaling Fr scaling 

Time T λ2
 λ0.5

 

Velocity LT
-1

 λ-1
 λ0.5

 

Acceleration LT
-2

 λ-3
 λ0

 

Discharge L
3
T

-1
 λ λ2.5 

Force ρL
4
T

-2
 λ0

 λ3
 

Pressure ρL
2
T

-2
 λ-2

 λ 

Power ρL
5
T

-3
 λ-1

 λ3.5
 

 

 

9.5.1 Pumps and turbines 

 

Discharge 

 
The discharge rate Q through a pump or turbine can be expressed in terms of the geometric 

characteristics of the device, the operating head and the fluid properties, in the general functional form 

 

( )f Q, N, D, B,gH, , 0ρ µ =     (9.6) 

 

where N is the rotational speed, D and  B  are  the  impeller  or runner diameter and width, respectively, 

and GHQ is  a  measure  of the operating pressure rise/drop across the device. Replacing this functional 
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relationship with its non-dimensional equivalent by taking r, N and D as the repeated variables in the 

transformation procedure, yields the following:  

 

φ
µ

ρ

B

D
,

Q

ND
,

gH

N D
,

ND3 2 2 2









    (9.7)  

 

If the numerical values of the non-dimensional groups in model and prototype are equal, then complete 

similarity is achieved.  The ratio B/D infers geometric similarity; the non-dimensional groups gH/N2D2 

and µ/ρND can be recognised as Fr-2 and Re-1, respectively. 

 

 

Power 

 

Similarly, pump or turbine power P can be expressed in a form similar to eqn (9.6):  

 

( )f P, N, D, B, gH, , 0ρ µ =      (9.8) 

 

Using ρ, N and D as the repeated variables, the corresponding non-dimensional relation is found: 

 

φ
ρ

µ

ρ

P

N D
,

B

D
,

gH

N D
,

ND
0

3 5 2 2 2









 =     (9.9)  

 

 

Specific speed 

 

It follows from equation (9.7) that, if the viscosity influence is neglected, dynamic similaraity is 

achieved in geometrically similar pumps, if the following relationships are satisfied: 

 

Q

ND

Q

ND
, hence

N

N

D

D3
m

3
p

m

p

p

3









 =



















  

and 

( )

( )

N D

gH

N D

gH
, hence

D

D

gH

gH

N

N

2 2

m

2 2

p

p

m

3

p

1.5

m

1.5

m

p

3








 =



















 =

























  

 

From these relations it follows that 

 

( )
( )

N

N

Q

Q

gh

gH

m

p

p

m

0.5

m

p

0.75

=
























   (9.10)  

 

If the model is defined as having unit values of Q and H, the rotational speed of the model can be 

expressed, using equation (9.10), as 

 

( )
( )

N
N Q

gH
m

p p

0.5

p

0.75
=      (9.11)  

 

The model speed, thus defined, is known as the  ‘specific speed’ Ns: 

 

( )
N

NQ

gH
s

0.5

0.75
=      (9.12) 
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In the form presented in equation (9.12), the specific speed is a non-dimensional index, which can be 

used to categorise pump types, as discussed in chapter 11.  In pump technology literature, the gravity 

constant is often omitted from the specific speed expression, resulting in the following dimensional 

form of the specific speed characteristic: 

 

N
NQ

H
s

0.5

0.75
=       (9.13)  

 

 

9.5.2 The use of distorted scales 

 

For practical reasons it may be desirable to use different vertical and horizontal scales.  In rivers and 

estuaries the horizontal dimensions of the reach to be modelled may be very large relative to the water 

depth. In order to accommodate a model within a reasonable plan area it is often necessary to select an 

horizontal scale that is smaller than the vertical scale.  The vertical scale should, as a general rule be not 

less than 1:100 and should not lead to water depths that are likely to be significantly influenced by 

surface tension effects. 

 

Distorted scales influence scale relationships.   Since the circumstances in which they are necessary 

invariably involve free surface flow, scale relationships are governed by Froude law scaling. 

Representing the horizontal scale as λx and the vertical as λy, the scale relations for velocity v and 

discharge Q, as dictated by the Froude number are as follows: 

 

velocity = f(y),       hence        
v

v

m

p
y

0.5= λ  

discharge = f(v,x,y),    hence    
Q

Q

m

p
y

0.5
x y= λ λ λ  

 

 

9.6 Concluding comments 
 

Dimensional analysis is a valuable aid to modelling of flow phenomena.  It enables the effects of a 

number of variables to be considered together.  However, it does not yield any information on whether 

particular variables are important or not  - this knowledge must be obtained from a physical 

examination of the problem. 
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